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ABSTRACT: Quorum sensing (QS) enables bacteria to sense and respond to
changes in their population density. It plays a critical role in controlling
different biological functions, including bioluminescence and bacterial
virulence. It has also been widely adapted to program robust dynamics in
one or multiple cellular populations. While QS systems across bacteria all
appear to function similarlyas density-dependent control systemsthere is
tremendous diversity among these systems in terms of signaling components
and network architectures. This diversity hampers efforts to quantify the
general control properties of QS. For a specific QS module, it remains unclear
how to most effectively characterize its regulatory properties in a manner that allows quantitative predictions of the activation
dynamics of the target gene. Using simple kinetic models, here we show that the dominant temporal dynamics of QS-controlled
target activation can be captured by a generic metric, ‘sensing potential’, defined at a single time point. We validate these
predictions using synthetic QS circuits in Escherichia coli. Our work provides a computational framework and experimental
methodology to characterize diverse natural QS systems and provides a concise yet quantitative criterion for selecting or
optimizing a QS system for synthetic biology applications.
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■ INTRODUCTION
Quorum sensing (QS) is a communication mechanism by
which bacteria sense and respond to changes in their density.
The basic QS mechanism can be illustrated using the lux
system of the bacterium Vibrio fischeri (Figure 1A). Within each
cell of a QS population, an enzyme LuxI (S) synthesizes a signal
molecule (acyl-homoserine lactone, or AHL) that diffuses
across the cell membrane or is exported into the external
environment.1,2 At a low cell density, the signal concentration is
low both inside and outside the cells. As the density increases,
the local signal concentration increases. Within the cells, a
regulator protein LuxR (R), when bound to AHL, activates
target gene expression. Therefore, target activation is correlated
to local population density through the production and
detection of the signal molecule.
Most bacteria appear to carry at least one QS system and

many, such as Vibrio harveyi3 and the human pathogen
Pseudomonas aeruginosa,4 carry multiple systems. These QS
systems across bacteria operate over a wide range of cell density
and control a wide variety of target genes related to virulence,
biofilm formation, enzyme secretion, and competence regu-
lation.5,6 QS systems display diverse architectures, have a
variety of signaling molecules and signal transport mechanisms,
and employ different strategies to detect the signal.1 As a result
of this diversity, there is no clear standard to quantify the
density-dependent control characteristics of a QS system, which
are often reported as a density range or the growth phase range
in which the target appears to activate.7,8 It is thus difficult to
quantify the basic characteristics of a QS system, compare two
QS systems, or measure how their characteristics are affected by

genetic or environmental perturbations. Here, in place of the
specifics of each QS systems such as the architecture, signal
molecules, or signal detection mechanism, we focus on the
‘core’ structure (Figure 1B) that is seen across QS systems and
use it to examine how QS-mediated control can be quantified.

■ RESULTS AND DISCUSSION

Sensing Potential as a Reliable Predictor of Temporal
QS Dynamics. If we consider a QS system as a “black box”,
two properties are most critical in determining its regulation of
a target gene: (1) its ability to gauge cell density from the
dynamics of the QS signal and (2) the response of the target
gene to the QS signal. Given this notion, we hypothesized that
a metric that integrates these two aspects would serve as an
accurate predictor of QS activation dynamics. To this end, we
have previously introduced the concept of “sensing potential”
for a QS system. Mechanistically, it can be directly derived
based on the specific reaction mechanism for each QS system.9

We note here that, by definition, sensing potential is
determined by the cell density at a single time point, when
the QS-mediated target gene is expressed at half-maximal level.
We wondered to what extent this metric could be used to

predict the overall temporal dynamics of a QS system. To
examine this question, we first modeled QS systems using the
core module and its associated parameters (Figure 1B and
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Methods): signal synthesis (k), feedback (ka), degradation (da),
transport (D), and detection (K). We simulated density-
dependent target activation ϕ (Figure 1C) over a wide range of
parameter values; each parameter set here represented a
distinct QS system. This technique, of computationally
studying the characteristics of a variety of network based
systems over a large parameter space,10−12 can provide insight
into the common properties of diverse systems that are not
apparent from studying each system in isolation.
In each simulation, we calculated the sensing potential as v =

(1/(Nϕ50Vc)), where Nϕ50 is the cell density for 50% activation
of the target above any basal level of activation ϕbasal and Vc
represents the cell volume (Figure 1C). In the same simulation,

we then calculated the densities at which the target gene
reaches 20%, 40%, 60%, and 80% of its maximum level. These
activation levels and their corresponding densities together
provide an overall representation of the density-dependent
activation phenotype of the QS system, equivalent to the ‘dose-
response’ shape of density versus the QS-regulated phenotype.
We then examined the correlation between these measures with
sensing potential.
These results (Figure 1D and Supporting Information (SI)

Figure 1A) demonstrated that the temporal profiles of QS-
mediated activation, as captured by the densities corresponding
to varying activation levels (ϕ20, ϕ40, ϕ60, ϕ80), could indeed be
predicted by the sensing potential (v). That is, even though v is
defined at a single data point, it is highly predictive of the
overall activation dynamics of a QS system. By definition of v,
the prediction is perfect for 50% of QS activation (ϕ50),
corresponding to a single curve that lumps simulation results
from all parameter combinations and different network motifs.
For other activation levels, the corresponding densities
correlated monotonically with v, though the accuracy of
prediction was lower (as indicated by the spread of data
points) for activation levels further away from 50%.
We note that the ability of a single point in the density-

dependent activation curve to predict the temporal character-
istics is not specific to the use of 50% activation as threshold.
The same behavior was observed if a different value such as
30% or 70% was used (SI Figure 1B). Also, at the low values of
v the densities corresponding to activation levels converge (top
left corner in Figure 1D, see also SI Figure 1A). This region
captures QS systems that activate at high densities close to the
carrying capacity. In these systems, the observed convergence is
a combined result of decreased cell growth as density
approaches carrying capacity and the dynamics of signal
accumulation − signal concentration at any given cell density
increases and approaches its steady state value as cell growth
slows down.
Importantly, as these simulations captured diverse QS

systems, the results show that QS systems may be treated as
a black box where their activation dynamics may be reliably
quantified by v independent of the specifics of each system.
Conversely, two QS systems can have the same v resulting from
different parameters or architectures but would have largely the
same phenotypic consequence for their respective hosts.

Experimental Methodology to Quantify QS-mediated
Activation. The above simulations suggest an approach to
characterize diverse QS systems by direct phenotypic measure-
ments: if we could determine such a metric for a given QS
system, this value would allow us to determine the overall
activation property of the QS system, without necessarily
knowing the full mechanism of the underlying QS regulation or
the corresponding parameters.
To this end, we sought to develop a general method to

quantify QS in a high-throughput manner by directly measuring
the density-dependent target gene expression. As a well-defined
model system, we used synthetic circuits in E. coli where circuit
components were derived from the minimal components of a
natural QS system: the well studied luxR-luxI system from V.
fischeri13 (Figure 2A). The QS ‘sensor’ is represented by the
plasmid pLuxRI where the genes luxR and luxI are under the
control of lac/ara-1 promoter.14 In the E. coli cell strain
MG1655, the lac/ara-1 promoter may be induced using IPTG
but its repression is leaky (MG1655 does not overproduce the
repressor LacI) and allows a low level promoter induction even

Figure 1. Predicting QS-mediated target activation by sensing
potential. (A) QS by a single cell of volume Vc in a population of
density N. Signal (red dots) is produced intracellularly by synthase S
and diffuses freely across the cell which senses the intracellular
concentration using detector R for target activation. Rate constants for
signal synthesis (k), transport by diffusion (D) and signal degradation
(da) and threshold signal concentration (K) are indicated. (B)
Minimal network-based representation of QS showing only signaling
dynamics in terms of production, transport, and degradation. The red
filled circles indicate intracellular (Ai) or extracellular (Ae) signals.
Arrows indicate the synthesis of a signal from cellular substrates, the
transport of signal between the cell and the environment, and the
degradation of the signal. For simplicity, degradation of signal in the
environment is not shown. Relevant rate constants described in text
are indicated next to the arrows. (C) Under QS control, as cell density
increases, so does target gene activation ϕ. Dynamics of signal
production and transport causes a minimum basal activation level
within the cells irrespective of cell density (see Methods) and is
marked as ϕbasal. Density-dependent activation above this level is
marked as ϕQS. The cell density Nϕ50 at which the target activation is
half-maximal of ϕQS is used to estimate v (black dot). Colored circles
mark the points where the other activations levels (20%, 40%, 60% and
80% of ϕQS) are reached. Inset: Intracellular and extracellular signal
concentration during population growth. Note the basal level of
intracellular signal. (D) Temporal properties of QS systems can be
predicted by their v. Each dot corresponds to the activation result from
one parameter set for QS as in C. 1000 different parameter sets were
randomly generated for the simulations. Despite the diversity of QS
systems generated, the dynamic characteristics ϕ20, ϕ40, ϕ60, ϕ80
correlate strongly with v as a metric and largely collapse to the same
line for each activation level. By definition of v, the data points for ϕ50
(black dots) must lie on the same curve.
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in the absence of IPTG. The target of QS is on the plasmid
pluxGFPuv, where reporter GFPuv expression is under control
of the promoter PluxI.

15

A high-density overnight culture of the QS cells (roughly 109

cells/ml) was strongly diluted (105 fold) into fresh medium and
induced with 1 mM IPTG. This low-density culture was then
incubated in a plate reader using a 96-well plate (see Methods).
Samples of the growing culture were periodically taken and
analyzed by flow cytometry to obtain the reporter expression of
individual cells in the population (Figure 2C). Following
dilution, the average reporter expression by cells showed a
characteristic ‘U’ shape: an initial decrease in reporter to the
level where cells can be considered OFF for any reporter
expression and later, an increase in reporter at high cell density
(Figure 2C). These dynamics can be explained as follows:
overnight grown cells were initially ON for reporter expression
as they had earlier reached high density allowing for high signal
accumulation. On dilution into fresh medium, intracellular and
extracellular signal concentration reach low levels and reporter
expression is no longer induced. Growth of these low-density
cells dilutes the initial intracellular reporter concentration
leading to a rapid decrease in reporter concentration in the first
few hours of cell growth (gray and pink region in Figure 2C;
also see Figure 3A). Next, when the cell density becomes
sufficiently high, the signal will reach sufficiently high levels to

trigger reporter expression (QS ON region) (Figure 2C). This
initial decrease and later increase in target expression with
density is a well-known QS characteristic.16−18

Alongside this periodic flow cytometry measurement, we also
monitored the overall fluorescence level as well as the density
(optical density (OD) at 600 nm) of the growing culture using
a microplate reader (Figure 2D). This provided observations of
the dynamics of QS activation with high temporal resolution
(∼every 10 min). The plate reader measurements did not
capture the earlier decrease (gray region) following dilution.
During that phase, the total fluorescence in each well was too
low to be detected by the plate reader (Figure 2D). However,
these measurements did accurately capture the QS-dependent
activation (QS OFF to ON; pink to yellow region). Thus, high-
frequency measurement of the fluorescence and OD of the
culture in the plate reader were used in all subsequent
experiments to quantify target expression dynamics.
How do we quantify QS from these measurements? Often,

the cell density corresponding to a minimum in the U shaped
reporter expression dynamics is used as a characteristic measure
of the QS system.16 This provides a convenient way to
characterize a given QS system as well as perturbations to it,
including mutants in which different sections of the QS
pathway have been deleted.16,17 However, we found that this
minimum point was sensitive to the initial cell density (Figure

Figure 2. Quantifying QS activation in synthetic gene circuits. (A) The QS genes are carried by plasmid pLuxRI where LuxR and LuxI are under
IPTG control (in LacI+ strains). pluxGFPuv acts as the reporter plasmid for QS wherein the GFP variant GFPuv is produced under the control of
the PLuxI promoter. (B) QS circuit with feedback on signal synthase luxI. (C) MG1655 cells grown in TBK media with 1 mM IPTG at 30 °C were
observed periodically using flow cytometry for GFP expression. Cells carried either pLuxRI and pluxGFPuv (green:QS) or pLuxR and pluxGFPuv
(gray) as luxI negative control. The histogram of GFP fluorescence at different time points after dilution starting from the overnight culture is shown.
QS controlled fluorescence initially decreases to the same level as control cells but starts to increase again at high density (OD > 0.1). Shaded
rectangles on the left mark regions where fluorescence decreases (gray), stays low or off (pink), and increases (yellow). (D) Continuous high-
throughput monitoring of culture density (OD) and culture fluorescence (normalized to OD) in plate reader alongside the flow measurement in C
shows the QS controlled transition from OFF (pink region) to ON (yellow region). Blue arrow marks the corresponding point at which GFP
expression was first visible by flow measurement in C. The initial decrease seen in flow measurement in C (gray) is not visible here, since the initial
dilution density is below OD based detection. The transition from OFF to ON (pink to yellow) takes place in the same OD range as observed with
flow cytometry. Colored circles depict the mean values while error bars are the standard deviation measured from three technical replicates.
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3A). In addition, we noted that when starting from a low initial
density, the population would reach and maintain an OFF state
over a large range of density (Figure 2C) making the exact
density at which minimum levels were reached difficult to
accurately identify experimentally. Together, this made it
difficult to develop the minimum point further as a reliable
metric.
To eliminate this effect of initial density from our

quantification of QS, we adopted a different approach. We
noted that when diluted sufficiently (>103 fold dilution of
overnight culture) the observed QS-mediated activation on
reaching high density, as observed from reporter expression,
was independent of the initial density (Figure 3B). On starting
growth from these high dilutions (low densities), all cultures
first reach low (OFF) levels of reporter expression (Figure 2C).
Then, QS-mediated activation of these cultures takes place on
reaching a sufficient high density, as observed through the
continuous increase in reporter expression with cell density
(above the low background value). This activation profile is
independent of initial density (Figure 3B). As such, it can serve
as a much more reliable measure, and we sought to quantify QS
characteristics using this property.
To determine whether such a metric established based on a

single point can experimentally capture temporal characteristics
of QS activation, we first measured QS-mediated reporter
production under various conditions using perturbations to the
signal synthesis rate or the signal degradation rate. To control
the signal synthesis rate, we modulated the IPTG concentration

which controls the rate of expression of the AHL-synthase LuxI.
Another method to modulate signal concentration is through a
positive feedback on signal synthesis and is observed in several
bacterial QS species.19−23 To study this, we incorporated
positive feedback into our system by introducing an additional
copy of the luxI gene under the PluxI promoter (Figure 2B). We
observed that both increasing IPTG (Figure 4A) and

introduction of feedback (Figure 4A inset) sped up QS
activation. This result is consistent with the expectation that
faster signal synthesis rates lead to higher signal concentration
at lower densities, in turn, leading to earlier QS activation.9

We modulated signal degradation by changing the pH of the
growth medium.24,25 Irrespective of the starting pH, cell growth
led to slight increase in the culture pH (SI Figure 2A).

Figure 3. Quantifying QS characteristics independent of initial
conditions. For all the dilutions, cells were grown under the same
conditions (TBK media, 30 °C with 1 mM IPTG and appropriate
antibiotics) but diluted to different initial densities as indicated. (A) At
higher initial cell densities (by lower dilutions of the overnight
cultures), characteristic U shaped dynamics were observed, but the
position of the dynamics as well as features such as the critical density
(vertical shaded rectangles) depended on the initial density. (B) At
lower initial cell densities (by higher dilutions of the overnight
cultures), the density dependent reporter expression observed was
independent of initial densitiesthe curves for the different indicated
dilutions overlap. Values shown indicate dilution level of overnight
culture. Colored circles depict the mean values while error bars are the
standard deviation measured from three technical replicates.

Figure 4. Sensing potential predicts temporal characteristics of QS
activation under perturbed conditions. (A) Density dependent
reporter expression from cells grown in media buffered to pH 7.0
under the different IPTG levels. Inset: Comparison of cells carrying
the positive feedback circuitry against the earlier case without
feedback, both at 1 mM IPTG. (B) Density-dependent reporter
expression from cells grown with 1 mM IPTG under different pH
conditions. Colored circles depict the mean values while the dotted
lines of corresponding color indicate the standard deviation measured
from three technical replicates. (C) Temporal characteristics of QS-
mediated activation can be predicted by critical density. For example,
points corresponding to ϕ0.5 mark density (on y-axis) where reporter
levels reached 50% of threshold value (4000 a.u.) plotted against the
critical density at which threshold density was reached (on x-axis).
Data points are obtained from the IPTG, pH, and feedback based
modulation of QS (3 replicates each for two clones for each
condition). In addition to points described by the legend, data from
feedback system (FB) in the presence and absence of IPTG are
indicated for clarity: double headed arrows indicate approximate
region where the points cluster (± indicate presence/absence of
IPTG). Note that IPTG and FB modulations were carried out at pH
7.0. Conversely, pH modulations were carried out at IPTG 1 mM. SI
Figure 3 shows additional details on this quantification methodology.
Lines indicate linear fit for each activation level; correlation coefficient
R for each activation level (against critical density) is indicated at the
end of each line. All correlation values were significant (P ≪ 0.01).
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However, this increase was uniform across all pH levels. Thus,
changing the starting pH allowed us to reliably modulate signal
degradation. At each pH level, we followed reporter production
with cell density (Figure 4B). We observed that QS-mediated
activation decreased rapidly above pH 7. Using a constitutive
GFP expression system, we confirmed that the decrease in
reporter expression was not an indirect effect of pH on cellular
physiology (SI Figure 2B). This reduction with pH was
consistent with experimental observations of increased AHL
instability in alkaline media24−27 and with theoretical
predictions9 that increasing signal degradation reduces the
sensing potential.
If, as shown by our simulations (Figure 1D), a metric such as

sensing potential calculated at a single point can predict the
dynamics of activation, we expect measurements at any
activation level ϕ to correlate with the critical density (cell
density at which a certain threshold reporter expression is
reached) approximately. To examine this experimentally, we
used the above QS-mediated reporter expression observations
taking reporter dynamics to reflect QS-mediated activation
(Figure 4 A, B, and SI Figure 3). We set an arbitrary but
sufficiently high (above basal) reporter level and determined
the critical density at which this threshold level is crossed. We
then determined the corresponding activation densities at
which reporter levels reached appropriate levels above (1.5 and
1.75 times) and below (0.5 and 0.75) this threshold. These
activation densities were then plotted against critical density
across all the observations, keeping the threshold reporter level
the same (see SI Figure 3 for a detailed explanation of the
quantification methodology).
We observed that despite the modulation in the critical

density (horizontal spread of data points) and consistent with
simulation results (Figure 1D and SI Figure 1), activation
densities correlated with critical density (Figure 4C).
Importantly, this correlation was inclusive of perturbations
that changed both the kinetic parameters (pH, IPTG) and the
architecture (through feedback) of QS regulation. The
overlapping of points of the same activation level but
representing distinct QS systems or conditions shows how a
metric measured at a single point can still reliably capture the
dominant activation properties of diverse QS systems. For
example, the density dependent activation dynamics from the
following QS modulations were similar: (1) QS cells in medium
with pH 7 and low IPTG (0.25 mM) representing low signal
degradation and production rate; (2) QS cells in medium with
high pH (7.5) and high IPTG (1 mM), representing high signal
degradation and production rate; (3) QS cells with signal
feedback at pH 7 and no IPTG, representing low signal
degradation with increased signal production through feedback
(Figure 4C and SI Figure 4). Together, these experimental
results combined with simulations (Figure 1D) suggest that a
single metric can capture and quantify the dominant character-
istics of QS-mediated target-gene activation dynamics regard-
less of the specific details of the system.
The simulations and experiments show that quantifying QS

using the v can provide sufficient information to capture the
dominant activation characteristics of a QS system, even if the
underlying mechanism is more complex than the core module.
Thus, v can be used as a single (reduced) metric to study how
QS characteristics affect downstream regulation. We demon-
strate that such a metric for a biological system can be
estimated through the dynamics of target-function activation
alongside cell density and may be particularly useful in

measuring the effects of perturbations to a QS system and its
environment (Figure 1D and 4). The ability of a single metric
to capture activation dynamics in our experiments persisted
through several complexities that would be expected with cell
growth but were not explicitly accounted for in our simulations
indicating the robustness of such quantification. These
complexities include nonmonotonic cell growth rate variations
not captured by simple logistic growth (see SI Figure 3A); (2)
the effect of reporter expression and IPTG on growth rate; (3)
the change in expression level of proteins with changes in
growth rate; and (4) changes in cell size. We note here that our
examination of the metric’s abilities to capture QS dynamics
was carried out using synthetic circuits, which account for many
of the aforementioned biological complexities. However,
natural QS systems would carry many additional complexities.
It remains to be tested to what extent the metric captures the
dynamics of natural QS systems. Furthermore, our results are
based on well-mixed cultures where signal concentrations can
assumed be uninform in each culture. For non-well-mixed
systems, the spatial distribution of the bacterial population
could lead to heterogeneity in local signal concentrations and,
hence, activation of a local population.28

The metric and its mathematical framework also provide a
quantitative link between the fundamental QS parameters and
the QS phenotype and could hence provide a greater
understanding of the systems.29 Capturing the characteristics
of a control system by a single metric could prove particularly
beneficial in synthetic biology where QS is increasingly being
used to engineer population level behavior.30,31 Annotation of
the diverse QS systems, available as parts for synthetic circuits,
for their v values would provide a catalog for circuit design.32 A
desired v can then be used as selection criteria for expected
function control.

■ MATERIALS AND METHODS
Mathematical Modeling of Diverse QS Systems. For

each QS system, we built a minimal model using ordinary
differential equations for the intracellular and extracellular
signal concentrations depending on the system architecture. A
more detailed analysis of this model formulation was done in
ref 9 described as a Type II QS system where intracellular signal
concentration is detected by cytoplasmic regulators and signal
diffuses freely in and out of the cell. Consider the system in
Figure 1A for a single cell in a population of cell density N. The
rate of change of the intracellular and extracellular signal
respectively is given by

= + − − −
A
t

k k A D A A d A
d
d

( )i
a i i e a i (A1)

= − −
⎛
⎝⎜

⎞
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A
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D A A
V
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d A
d
d

( )e
i e

c

e
a e
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where Ai and Ae represent intracellular and extracellular signal
concentrations; k denotes basal signal synthesis rate; D(Ai −
Ae) accounts for diffusion of the signal to the culture; kaAi
accounts for the signal synthesis by positive feedback; Vc
denotes the average cell volume; Ve denotes the average
volume of a the microenvironment for each cell (Ve = 1/N);
and da denotes the degradation rate constant of the signal
(inside or outside the cell).
We assume that Vc remains constant during population

growth. We further assume that intracellular signal Ai-based
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target activation ϕ follows Hill kinetics15,32 with cooperativity a
where 1 < a < 2. We chose a = 1.6

ϕ =
+
A

K A
i
a

a
i
a

(A3)

Here, K represents the half-maximal concentration for target
activation.
Alongside signaling dynamics, cell growth is modeled by a

logistic equation
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N
N
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with NM as carrying capacity and g the specific growth rate.
Note 1: In eq A1 where Ae is zero (such as when cell density

is very small and thus N → 0) the steady state is then given by
Ai,ss = (k/(D + da)). This shows that for any positive, finite
values of the fundamental parameters, Ai,ss is always greater than
zero. In other words, a low basal level of signal always exists
inside cells as long as there is some signal production and either
signal diffusion or degradation is not infinitely large (typically,
D ≫ da). The basal level of target activation ϕbasal
corresponding to this signal level can be calculated as ϕbasal =
((Ai,ss

a )/(Ka + Ai,ss
a )). This activation by the basal signal level can

lead to nonzero activation levels irrespective of density.33

However, this activation by basal intracellular signal is not
encountered in QS systems where extracellular signal Ae
mediates QS response. Thus, to unify QS system types
irrespective of the level of basal activation, we redefine the
activation level as

ϕ ϕ ϕ ϕ= + −(1 )basal basal QS (A5)

Thus, v is calculated from the density at which ϕ50 = ϕbasal + (1
− ϕbasal)0.5 (Figure 1C). Similarly, the dynamic characteristics
are the densities at which ϕx = ϕbasal + (1−ϕbasal)x, where x is
the activation under density-dependent control (plotted in
Figure 1D)
Note 2: For simplicity, we assume that the signal degradation

rate constant (da) is the same in the intracellular and
extracellular compartments. It may, in fact, be different in
these compartments: cell-growth induced dilution would act in
the intracellular compartment, whereas changes in the culture
pH would likely impact the extracellular degradation more
strongly. However, due to fast signal diffusion between the two
compartments and the large size of Ve in comparison to Vc
(even at high cell densities Ve ≫ Vc), degradation in the
extracellular compartment acts as the major signal sink and thus
as the major determinant of signal concentration by
degradation (for both Ai and Ae, see Supplementary Figure
5). Thus, the parameter da can be interpreted to be the signal
degradation rate constant in the extracellular compartment.
Parameters da, D, k, ka, and K for each QS system were

chosen randomly within the bounds described below. For each
set of parameters, eqs A1−A5 were simulated starting from a
low density 105 cells/mL. v for a system was determined as
described in the text at the density for 50% activation above
basal activation as described by eq A5 and shown in Figure 1C.
Bounds for the parameter values were based on earlier
estimations of natural QS system parameters.9 The following
parameter bounds were used for QS with feedback: k = 2−5 ×
103 nM h−1, ka = 1−50, D = 1−4 × 102 h−1, da = 0.01−0.1 h−1,
K = 10 − 50 nM. To separately capture QS systems without

feedback, a larger range of k (k = 1 − 10 × 103) nM h−1 was
used so as to achieve a similar spread of sensing potential values
covered with both architectures. 500 simulations of randomly
chosen parameter sets were carried out for each case: QS with
and without feedback. Results from all parameter sets for which
QS-mediated activation reached at least the activation levels
that we chose to mark v (50% in Figure 1D; 30% and 70% in SI
Figure 1B) by the end of growth were plotted.

Strains, Media, and Growth Conditions. MG1655 cells
were used throughout this study. Unless mentioned otherwise,
pH-buffered TBK medium (10 g tryptone, 7 g KCl per liter
buffered with 100 mM MOPS) at 30 °C was used. Cells were
first grown overnight from single colonies in duplicate in the
presence of appropriate antibiotics in 3 mL cultures in 14 mL
tubes in shaker incubator at 30 °C. In the morning, 1 mL of cell
culture was washed twice with distilled water and diluted 105

fold (or as indicated in Figure 4A, B). 200 μL of culture with
desired IPTG and pH level was added to 96 well black plates.
50 μL of mineral oil was added to prevent evaporation and the
plate was incubated in plate reader (Victor3, Perkin-Elmer) at
30 °C. Readings of OD (Absorbance at 600 nm) and GFP
(using filters for excitation at 405 nm, emission at 535 nm)
were taken every 10 min with periodic shaking (5s orbital). The
correlation between OD measured in the plate reader and cell
density was taken to be linear.32,34,35 This combination of
media and conditions provided appropriate low growth rate
and low background for the detection of GFP signal in plate
reader. For flow cytometry reading, 20 replicate wells of the
appropriate cell culture (pLuxR or pLuxRI plasmid with
pluxGFPuv) were grown in a plate, as above. Periodically,
100−200 μL from an unsampled well was removed and mixed
with 500 μL water. Cells were then spun down and
resuspended in 1% formaldehyde for fixing. Samples were
analyzed by flow cytometry using a FACSCantoII (BD
Biosciences) within 2 days of fixation (488 nm excitation,
530 nm emission, FITC pulse height). For exogenous AHL
dilution, 3OC6AHL (Sigma) was first dissolved in ethyl acetate
as the stock solution (20 mM). For use, 5 μL of this solution
was taken in a 1 mL centrifuge tube and the ethyl acetate was
evaporated under a column of air. 995 μL of TBK media with
appropriate antibiotics was added to make 100 μM solution,
which can be used as 1000 nM when diluted 100 fold into a
well.

Processing Plate Reader Data. The high throughput data
from the plate reader is in the form of time, OD, and reporter
expression level (SI Figure 3). Reporter expression data was
normalized against OD600 to provide reporter expression per
cell. Normalized GFP expression was calculated by subtracting
GFP reading of blank TBK and dividing by corresponding
OD600 subtracted for blank TBK. Normalized data was
denoised in MATLAB using a local regression. To calculate
critical density at which threshold reporter level is crossed, an
activation OD range was selected and the corresponding
normalized GFP data were fit with a third order polynomial
(bounded within a region of interest of reporter values), to
avoid nonmonotonic fluctuations in plate reader data. A
threshold reporter expression level corresponding to ϕ50 was
selected (4000 a.u of normalized GFP expression) and the
densities at which higher and lower levels were reached were
determined by interpolating directly or based on a fitted
polynomial (marked as ϕ0.25, ϕ0.5, ϕ1.5, ϕ1.75 for reaching 0.25,
0.5, 1.5, and 1.75 times the threshold level). SI Figure 3 shows
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this methodology applied to a sample observation of QS-
mediated activation.

■ ASSOCIATED CONTENT
*S Supporting Information
Additional Figures 1−5. This material is available free of charge
via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: you@duke.edu.
Present Addresses
§Department of Biochemistry and Biophysics, University of
California, San Francisco, California 94158, United States;
Gladstone Institutes, San Francisco, California 94158, United
States.
⊥Department of Bioengineering, Stanford University, Stanford,
California 94305, United States.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was partially supported by National Science
Foundation CAREER Award (CBET-0953202), a DuPont
Young Professorship (L.Y.), a David and Lucile Packard
Fel lowship (L.Y.) , National Insti tutes of Health
(1RO1GM098642), Office of Naval Research (N00014-12-1-
0631), a fellowship from the Center for Theoretical and
Mathematical Sciences (CTMS) at Duke University (A.P.), and
a CBTE graduate fellowship at Duke University (J.K.S.).

■ REFERENCES
(1) Ng, W. L., and Bassler, B. L. (2009) Bacterial quorum-sensing
network architectures. Annu. Rev. Genet. 43, 197−222.
(2) Williams, P., Winzer, K., Chan, W. C., and Camara, M. (2007)
Look who’s talking: Communication and quorum sensing in the
bacterial world. Philos. Trans. R. Soc. Lond., B: Biol. Sci. 362 (1483),
1119−1134.
(3) Long, T., et al. (2009) Quantifying the integration of quorum-
sensing signals with single-cell resolution. PLoS Biol. 7 (3), e68.
(4) Schuster, M., and Greenberg, E. P. (2006) A network of
networks: Quorum-sensing gene regulation in Pseudomonas aeruginosa.
Int. J. Med. Microbiol. 296 (2−3), 73−81.
(5) Gonzalez, J. E., and Marketon, M. M. (2003) Quorum sensing in
nitrogen-fixing rhizobia. Microbiol. Mol. Biol. Rev. 67 (4), 574−592.
(6) Smith, R. S., and Iglewski, B. H. (2003) P. aeruginosa quorum-
sensing systems and virulence. Curr. Opin. Microbiol. 6 (1), 56−60.
(7) Lupp, C., Urbanowski, M., Greenberg, E. P., and Ruby, E. G.
(2003) The Vibrio fischeri quorum-sensing systems ain and lux
sequentially induce luminescence gene expression and are important
for persistence in the squid host. Mol. Microbiol. 50 (1), 319−331.
(8) Pesci, E. C., Pearson, J. P., Seed, P. C., and Iglewski, B. H. (1997)
Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J.
Bacteriol. 179 (10), 3127−3132.
(9) Pai, A., and You, L. (2009) Optimal tuning of bacterial sensing
potential. Mol. Syst. Biol. 5, 286.
(10) Brandman, O., Ferrell, J. E., Jr., Li, R., and Meyer, T. (2005)
Interlinked fast and slow positive feedback loops drive reliable cell
decisions. Science 310 (5747), 496−498.
(11) Ma, W., Trusina, A., El-Samad, H., Lim, W. A., and Tang, C.
(2009) Defining network topologies that can achieve biochemical
adaptation. Cell 138 (4), 760−773.
(12) Tsai, T. Y., et al. (2008) Robust, tunable biological oscillations
from interlinked positive and negative feedback loops. Science 321
(5885), 126−129.

(13) Fuqua, C., and Greenberg, E. P. (2002) Listening in on bacteria:
Acyl-homoserine lactone signalling. Nat. Rev. Mol. Cell Biol. 3 (9),
685−695.
(14) Lutz, R., and Bujard, H. (1997) Independent and tight
regulation of transcriptional units in Escherichia coli via the LacR/O,
the TetR/O, and the AraC/I1-I2 regulatory elements. Nucleic Acids
Res. 25 (6), 1203−1210.
(15) Collins, C. H., Arnold, F. H., and Leadbetter, J. R. (2005)
Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a
broad spectrum of acyl-homoserine lactones. Mol. Microbiol. 55 (3),
712−723.
(16) Henke, J. M., and Bassler, B. L. (2004) Three parallel quorum-
sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol.
186 (20), 6902−6914.
(17) Miller, M. B., Skorupski, K., Lenz, D. H., Taylor, R. K., and
Bassler, B. L. (2002) Parallel quorum sensing systems converge to
regulate virulence in Vibrio cholerae. Cell 110 (3), 303−314.
(18) Lenz, D. H., and Bassler, B. L. (2007) The small nucleoid
protein Fis is involved in Vibrio cholerae quorum sensing. Mol.
Microbiol. 63 (3), 859−871.
(19) Morrison, D. A., and Lee, M. S. (2000) Regulation of
competence for genetic transformation in Streptococcus pneumoniae:
A link between quorum sensing and DNA processing genes. Res.
Microbiol. 151 (6), 445−451.
(20) Waters, C. M., and Bassler, B. L. (2005) Quorum sensing: Cell-
to-cell communication in bacteria. Ann. Rev. Cell Dev. Biol. 21, 319−
346.
(21) Li, Y. H., Lau, P. C., Lee, J. H., Ellen, R. P., and Cvitkovitch, D.
G. (2001) Natural genetic transformation of Streptococcus mutans
growing in biofilms. J. Bacteriol. 183 (3), 897−908.
(22) Lithgow, J. K., et al. (2000) The regulatory locus cinRI in
Rhizobium leguminosarum controls a network of quorum-sensing loci.
Mol. Microbiol. 37 (1), 81−97.
(23) Bartels, F. W., et al. (2007) Effector-stimulated single molecule
protein−DNA interactions of a quorum-sensing system in Sinorhi-
zobium meliloti. Biophys. J. 92 (12), 4391−4400.
(24) Kaufmann, G. F., et al. (2005) Revisiting quorum sensing:
Discovery of additional chemical and biological functions for 3-oxo-N-
acylhomoserine lactones. Proc. Natl. Acad. Sci. U.S.A. 102 (2), 309−
314.
(25) Yates, E. A., et al. (2002) N-acylhomoserine lactones undergo
lactonolysis in a pH-, temperature-, and acyl chain length-dependent
manner during growth of Yersinia pseudotuberculosis and Pseudomonas
aeruginosa. Infect. Immun. 70 (10), 5635−5646.
(26) Schaefer, A. L., Hanzelka, B. L., Parsek, M. R., and Greenberg, E.
P. (2000) Detection, purification, and structural elucidation of the
acylhomoserine lactone inducer of Vibrio fischeri luminescence and
other related molecules. Methods Enzymol. 305, 288−301.
(27) Horswill, A. R., Stoodley, P., Stewart, P. S., and Parsek, M. R.
(2007) The effect of the chemical, biological, and physical environ-
ment on quorum sensing in structured microbial communities. Anal.
Bioanal. Chem. 387 (2), 371−380.
(28) Hense, B. A., et al. (2007) Does efficiency sensing unify
diffusion and quorum sensing? Nat. Rev. Microbiol. 5 (3), 230−239.
(29) Phillips, R., and Milo, R. (2009) A feeling for the numbers in
biology. Proc. Natl. Acad. Sci. U.S.A. 106 (51), 21465−21471.
(30) Xavier, J. B. (2011) Social interaction in synthetic and natural
microbial communities. Mol. Syst. Biol. 7, 483.
(31) Pai, A., Tanouchi, Y., Collins, C. H., and You, L. (2009)
Engineering multicellular systems by cell−cell communication. Curr.
Opin. Biotechnol. 20, 461−470.
(32) Canton, B., Labno, A., and Endy, D. (2008) Refinement and
standardization of synthetic biological parts and devices. Nat.
Biotechnol. 26 (7), 787−793.
(33) Pai, A., Tanouchi, Y., and You, L. (2012) Optimality and
robustness in quorum sensing (QS)-mediated regulation of a costly
public good enzyme. Proc. Natl. Acad. Sci. U.S.A. 109 (48), 19810−
19815.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb400069w | ACS Synth. Biol. 2014, 3, 220−227226

http://pubs.acs.org
mailto:you@duke.edu


(34) Dekel, E., and Alon, U. (2005) Optimality and evolutionary
tuning of the expression level of a protein. Nature 436 (7050), 588−
592.
(35) Koch, A. L. (1970) Turbidity measurements of bacterial cultures
in some available commercial instruments. Anal. Biochem. 38 (1), 252−
259.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb400069w | ACS Synth. Biol. 2014, 3, 220−227227


